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WEAK MIXING AND UNIQUE ERGODICITY 
ON HOMOGENEOUS SPACES 

BY 

RUFUS BOWEN t 

ABSTRACT 

Under certain conditions the weak mixing of a translation on G/F implies that 
the action of an associated subgroup of G on G/F is uniquely ergodic. This 
result generalizes earlier theorems of Furstenberg and Veech. 

Let G be a Lie group and F a discrete subgroup with G/F compact.  Then G 

acts on G/F by T, (h F) = gh F. We will assume G unimodular so that some Haar  

measure on G induces a G-invariant  probability measure ~ on G/F. On G/I" 

one takes a Riemannian metric induced from a right invariant metric on G. For 

a C G the automorphism A d ~ ( g ) =  aga -~ of G corresponds to an automorph-  

ism ad~ of the Lie algebra of G. Let 6Y(a),  (SS"(a), (~6"(a) denote the invariant 

subspaces of (~ corresponding to the eigenvalues of ado satisfying t ,~ l<  l, 

]A ] = 1, ]A ] > 1 respectively. These subspaces are subalgebras of (~; let G" be 

the subgroup of G corresponding to (~6"(a). In this paper  we prove the 

THEOREM. Assume that T, is weak mixing on ( G /F, I~ ) and that ad, [ (tSC(a) 

is a semisimple linear map. Then action of G" on G /F on the left is uniquely 

ergodic. 

This means that /~ is the only Borel probability measure on G/F invariant 

under G u. One case of the above is a theorem of Furstenberg [3]; here Ta is (part 

of) a geodesic flow and G u is a horocycle flow. In Section 3 one will see that this 

theorem also includes Veech's  [1 1] generalization of Furstenberg to semi-simple 

Lie groups. The basic idea used in the present paper  occurs in [2]; in some sense 

one can find it in [1] and [11]. The papers [2] and [6] give analogues of 

Furstenberg 's  theorem in dynamical systems which move away from the Lie 

group framework.  
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I. Proof of the Theorem 

Let 6Jc be the complexification of (~6 and W~ = {v (~ (~6c: (ada - AI)"v = 0 

some n > 0}. Then 0J,: = O7-~ W,, where A , , . . . ,  Z,. are the distinct eigenvalues 

of ado and also [W,,, W,,] C W,,,, (this standard fact follows as ad, is a Lie 

algebra automorphism). From this it follows that 

(~6~ = ,,~<, W~,, (~6~ = `  ~(~_, W~,, (~6~ = ,(~, W~, 

are subalgebras of (~6c. These are the complexifications of (bJ' (a), (~" (a), (~6" (a),  

which are therefore subalgebras of (~6 as we claimed earlier. Assuming that 

] A, [ - < . "  -< [Ak I are the eigenvalues with ]A, [ > 1, one has foil:, ( ~ = ,  W,,] 

C ( ~ = / + ,  W,.. From this it follows that (~6~' and hence @"(a)  is nilpotent. 

From [ W,,, W~, ] C W,,,, one sees that (~)"(a) = ~ (a) + OP (a) is a subalgebra 

of @; let G c, be the corresponding subgroup of G. One defines two C = foliations 

on G/F by 

~" = {G"x}xea/r and ~c~ = {G"x}xec~/r. 

These foliations are invariant under T, in the sense that 

To(G"x) = (aG"a ')ax = G"T,x and To(G"x)  = G"T,x .  

The two foliations ~" and (g" are transversal with complementary dimen- 

sions. Let p = dim G" and q = dim G ¢' ; pick small disk neighborhoods U C G "  

and V C G "  of e. One can find open sets M , , . . . , M ,  covering G/F and C ® 

diffeomorphisms ~b~ = (~bl, ~b~): iV/,. ~ D o x D q (D" is the n-disk) so that 

ck,(M, n Vx) = D" x ~ ( x )  and ~b~(M~ N Ux)= ~bl(x) x D q 

for every x E M,. 

On a leaf G"x of q3" we let tt" denote the measure induced from the 

Riemannian metric of G/F restricted to G"x. Since the Riemannian metric on 

G/F came from a right invariant metric on G, we see that /x"  comes from a right 

Haar  measure tt* on G" via the immersion G " ~  G"x (by g ~ g x ) .  

LEMMA. There isafunctione~(6)>O defined for 6 > 0  with l im~_oa05) = 1 

and for which the following holds: If L,, L2 are compact subsets of G"x,, G"x2 

and there is a continuous function k : L, ~ B~(e, G " )  and a bi]ection h: L, ~ L~ 

so that h ( z )  = k(z)z ,  then tz"(L,)>= a(6)/x"(L2).  

PROOF. Let M* C M~ be compact with G/F C U ~=, int M*. It is enough ,to 

prove the statement for L~, L2C some M* and ,b,(L,) = L' ,x u~. Then L', = L;  
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and the ~b~ (Lj) have the same measure using the Euclidean metric. Since the &~ : 

M*~ ~ R p+q are C a and the M~' are compact ,  the ratio I~"(L~)/~"(L2) is bounded 

and tends to 1 as 8 ~ 0  (i.e., I l u , -  u~ll--'0). • 
Let v denote  any G"'- invariant  Borel probabili ty measure.  

LEMMA 2. Suppose R C G" is open, S C G"x is compact, and (r, s)---~ rs is 

one-to-one on R x S ~ G/F. If X C Y C RS are Borel sets, then v (X) /v (Y)  E 

[infqb, supqb] where 

(U ( Y N R s ) "  s E S ' t z ~ ( Y A  

PROOF. Define m on S by m ( E ) =  v(RE) for E CS. There are Borel 

measures us on Rs for m almost every s E S such that [9]: 

v(W) = f vs(W n Rs)dm(s) 

for W CRS Borel. The measures v~ are determined (for m-almost  all s) by this 

formula. As v(gW)= v(W)  for g E G", this uniqueness implies that for 

m-almost  all s the measure v~ comes from a left (local) Haar  measure on R C G"  

via the identification R--~ Rs. Since G"  is unimodular (it is nilpotent), us is 

proportional  to tz u ]Rs for m-almost  all s. The lemma follows by applying the 

formula to both W = X and W = Y. • 

We call a Borel set H C G / F  of small d iameter  a box if for any points x~, 

x2 E H the point Ux, n Vx: E H. A set of small diameter  H is contained in some 

M,; H is seen to be a box if and only if O~(H)-- L × K for some Borel sets 

L CDP and K CD q. 

LEMMA 3. For any ~ > 0 there is a finite cover of G /F by boxes H I , ' " ,  H, of 

diameter at most [3 with p.(H~)> 0 and u(a"Hj N a " H ~ ) = 0  for j ~  k, n >=0. 

PROOF. Define the measure v, by u,(E)= v(a"E). For g E G"  one has 

v,(gE) = v(a"gE)= v( (a"ga- ' )a 'E)= v(a"E)= u,(E). 

So v' = E~=0(1/2")u, is a G"- invar iant  measure.  It is enough to cover G/F by 

small boxes H1," . ,H, with pairwise disjoint interiors, Hj = i n t H j ,  and 

v'(M-/j) = 0. Lemma  2 applied to w' in place of v gives us a measure m'~ on 

S, = ~b;' (0 x D q) when we use R = V. We identify S, with 0 x  D q and think of 

m', as being on 0 x D L  For a box H C M ,  let us write & , ( H ) =  L x K ;  then 

to'(OH) = 0 provided 
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(*) rn;(OK) = 0 and ix"(OL) = 0. 

We construct  inductively on i a cover  {H, , .  • . ,  H,,} of M, U . .  • U M~ by boxes 

such that: 

Hi = int Hi, int Hj n int Hk = Q for j #  k, 

and (*) holds for  Hj with j E (t~_,, t~]. 

For  j E [1, t,] let 

49,.,(M~., N int Hi)  = L~ x K~. 

One  sees that (*) holding for the i'<=i with/" E (t,,_,, t,,] implies that 

m ti+l(~Kj) = 0 and  ix" (c)L;) = O. 

For every subset A C { 1 , . . - ,  t,} (including A = QS) define 

( ,,,) - KA = D q n \ u K ,  
]EA j~A 

( ) LA= DP (-'1Kj \ U Li. 
jEA j~A 

Slightly shrinking M,+, if necessary,  we may assume m'~.,(ODq)=O and 

ix "(OD p) = 0. As cgKA C c~D q U [..J, aKj, one has m '~+~(c~KA) = 0. Also KA = KA, if 

KAAKA,#QS, and D"  = I,.JA/~. Similarly, i x " ( 0 L A ) = 0 ,  LA = LA, if 

LA A LA, ~ 0 ,  and D p = UA/7.A. Let  H,,÷,,..., H,,+, be all the 49~+~t (LAx KA) not 

conta ined  in some H~ with j E [1, t~]. • 

We will now show u = ix. Let  F = O , ' ( L  × K)  be a compact  box and let 

F, = 49,' (L × B,(K))where B~(K)is the y -ne ighbo rhood  of K in R q for 3' > 0. 

The re  is a 6 > 0 so that kx E F~ when x E F and k E B~ (e, G ") .  Finally, since 

ad,  [ 65~(a) is semisimple and ado t65"(a) has all e igenvalues I A I<  1, there  is an 

e > 0 so that 

k ~ B~(e, G")  ~ a 'ka-" ~ B~(e, G " ) n  >_0. 

If x ' =  kx with x E G/F and k EBe(e ,G") ,  then T"x '= (a"ka-")T~x and 

a"ka-" E Bs(e, G"). 

Let  H , , . - . ,  H, be a cover  of G/F by disjoint boxes given by L e m m a  3 of such 

small d iameter  that 
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x E H ,  x ' E  Ux NH, ~ x '= kx with k E B , ( e , G " ) .  

Pick z~ E H r. For  y E H~ n Uz~ and m > 0  define 

Am(y)  = V y N H ~ N a - = F  

and 

For y, y 

A ~(y)= Vy n H, n a-~'F~. 

'EHj  n Uz, one has a one- to -one  map A ~ ( y ) - - ~ A ~ ( y ' )  defined by 

x--* x' = Vy' N Ux. For then x '  kx with k E B~(e, G")  and a~"x ' = 
(a mka-m)a rex. Since a mx E F we have a " x '  E F~. L e m m a  1 gives 

(I) /z" (a "A  ~,(y ')) _-> a (8)/~" (a "3,1 (y)).  

Since T, is weak mixing (see [4]) there is a sequence  m k - *  oo so that 

lim I~(amkHj N F)= ~(Hj)I~(F) 
k ~  

for all 1 _-<j _-<t. For  large m -- mk one  has (using ~ ( a " H , ) - -  p . ( H j ) > 0 )  

(a ~nj  n F )  
(II) tz(a"H,) >= (1 - 8)/z (F).  

Now a"I-Ij Cam.(VUzj)= (amVa-")(a"Uzj) .  We apply L e m m a  2 to x = a=zj, 
R =amVa-m S=(amUa-m)amzg, X = a ~ H j n F ,  Y = a ' H ~ a n d v = / z .  By(II) 

and L e m m a  3 there  is an s ~ a " ( H  i N Uzj)  with 

iz~(amVa-"s N a~'H~ N F ) >  (1 - 8)/z (F).  
i~"(a ~Va-'~s n a"I-l;) = 

Now s = a'~y with y E Hj N Uz~ and one  can rewri te  this expression as 

~"(a'~Am(Y)) >= ( 1 -  8)/ . t(F).  (III) /~" (a m ( Vy n H, )) 

Using (I), for any y' E H, n Uz, one obtains 

~"(amA,, '(y')) > i . t"(a"(Vy n Hi)) a ( 8 ) ( 1  - a ) / z (F )  
(IV) iz.(am(Vy,nU,))= ~(a.(Vy,n~)) 

=> a(8)z(1 - 8)p . (F) .  

For the second inequali ty we use L e m m a  1. Working  backwards  and applying 

L e m m a  2 to v, X = a m/_/j n F,  and Y = a" /4;  we get 
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v ( a " / - / / A F , ) >  (8 )~ (1 -6 )~(F) .  
V ( a  " / - / j  ) = t~ 

This holds true for all large m = m~ and all 1 =< j =< t. Summing over j (using 

v(a"H..j N a ' H k )  = O) 

v(F~) = Y. v(a"t-I i n F~)>= a(8)z(I - 6)/z (F). 
i 

Letting ~,--->0, 8 - * 0  and v(F)>= ~(F). 
One obtains I~(F)>=v(F) analogously. Use a sequence mk--'~oo with 

/~(a'k/-/j n /7, )--> /~ (/-/j )/z (F, ). For large m = mk one has 

(Ir)  (1 + 6)/~(F,)_- > tz(a'Hi n F.,) 
t ~ ( a ' ~ )  

Using Lemma 2 one finds a y ' E  ~ n Uzj with 

/ ~ " ( a ' a , ' ( y ' ) )  
( IIr)  (1 + 8)~ (F,)_- > / ~ . ( a ~  (Vy, n ~ ) ) .  

For any y E ~ O Uzj, (I) gives us 

(IV') (1 + 8)it (F , )a  (~) -2 _-> 

Then Lemma 3 gives 

/z" (a"A, ,  (y)) 
/xU(a ' (Vy n Hi))" 

v(a'  n F) 
(1+ 8)~(F.,)a(6) -z>- v ( a " ~ )  

and so (1+ 8)~(F,)a(8) -2> v(F). Letting y---~0, 6--->0 and p . (F )=  > v(F). 
We have seen v(F) =/~(F)  for all small compact boxes F. This implies v =/x, 

and the action of G" is uniquely ergodic. 

2. Afline maps 

Suppose now that A is an automorphism of G with A(F)  = F and a E G. 

Then 

T(g F) = aa (g)F 

defines a measure preserving map T: G/F--->F. Then R ( g ) =  aA(g)a -~ is an 

automorphism of G and its derivative r = dR,: ~ 6 )  is a Lie algebra 
automorphism. Let G u (r) be the subgroup of G associated with the subalgebra 
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@" (f) corresponding to all eigenvalues )t of r with [ A I > 1. The proof in Section 
1 works still in this case. 

THEOREM. Let T as above be weak mixing and assume r l~ ' ( r )  is a 

semi-simple linear map. Then the action of G' (r )  on G/F is uniquely ergodic. 

3. Semi-simple G 

Let G be a semi-simple Lie group with finite center and no compact factor and 

let G = K A N  be an Iwasawa decomposition. Then Veech [11] proved that N is 

uniquely ergodic on G/F for any co-compact discrete subgroup F C G. By the 
construction of an Iwasawa decomposition [5], @" (a)  C A r for a in the exponen- 
tial A ÷ of the positive Weyl chamber and A r the Lie algebra of N. Also ad, is 

semi-simple for all a E A. Thus our theorem gives Veech's result if there are any 

a E A ÷ with T, weak mixing (if G:  is uniquely ergodic, so is the larger group 
N).  The existence of such an a follows from [7] or [12]. 

The minimal actions of theoreml.3 of [11] (see also theor. 5, [10]) are in fact 

uniquely ergodic. Here one has a weak mixing R ~ action; almost every element 

of such an action is weak mixing (apply [8] to the direct product of the action 
with itself.) 
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