WEAK MIXING AND UNIQUE ERGODICITY ON HOMOGENEOUS SPACES

BY RUFUS BOWEN⁺

ABSTRACT

Under certain conditions the weak mixing of a translation on *G/F* implies that the action of an associated subgroup of G on G/Γ is uniquely ergodic. This result generalizes earlier theorems of Furstenberg and Veech.

Let G be a Lie group and Γ a discrete subgroup with G/Γ compact. Then G acts on G/Γ by $T_s(h\Gamma) = gh\Gamma$. We will assume G unimodular so that some Haar measure on G induces a G-invariant probability measure μ on G/Γ . On G/Γ one takes a Riemannian metric induced from a right invariant metric on G. For $a \in G$ the automorphism $\text{Ad}_a(g) = aga^{-1}$ of G corresponds to an automorphism ad_a of the Lie algebra of G. Let $\mathfrak{G}^s(a)$, $\mathfrak{G}^c(a)$, $\mathfrak{G}^u(a)$ denote the invariant subspaces of ($\frac{1}{3}$ corresponding to the eigenvalues of ad_a satisfying $|\lambda|$ < 1, $|\lambda| = 1, |\lambda| > 1$ respectively. These subspaces are subalgebras of \mathcal{F} , let G^* be the subgroup of G corresponding to $\mathfrak{G}^*(a)$. In this paper we prove the

THEOREM. Assume that T_a is weak mixing on $(G/\Gamma, \mu)$ and that $ad_a | (S^c(a))$ is a semisimple linear map. Then action of G^u on G/Γ on the left is uniquely *ergodic.*

This means that μ is the only Borel probability measure on G/Γ invariant under G^* . One case of the above is a theorem of Furstenberg [3]; here T_a is (part of) a geodesic flow and G^{μ} is a horocycle flow. In Section 3 one will see that this theorem also includes Veech's [11] generalization of Furstenberg to semi-simple Lie groups. The basic idea used in the present paper occurs in [2]; in some sense one can find it in [1] and [11]. The papers [2] and [6] give analogues of Furstenberg's theorem in dynamical systems which move away from the Lie group framework.

t Partially supported by the Sloan Foundation and NSF GP-14519. Received July 13, 1975

I. Proof of the Theorem

Let \mathcal{G}_C be the complexification of \mathcal{G}_C and $W_\lambda = \{v \in \mathcal{G}_C : (ad_a - \lambda I)^v v = 0\}$ some $n > 0$. Then $\mathfrak{G}_c = \bigoplus_{i=1}^m W_{\lambda_i}$ where $\lambda_1, \dots, \lambda_m$ are the distinct eigenvalues of ad_a and also $[W_{\lambda_1}, W_{\lambda_j}] \subset W_{\lambda_1\lambda_j}$ (this standard fact follows as ad_a is a Lie algebra automorphism). From this it follows that

$$
(\mathfrak{H}_C^s = \bigoplus_{|\lambda_i| \leq 1} W_{\lambda_i}, \mathfrak{G}_C^c = \bigoplus_{|\lambda_i| = 1} W_{\lambda_i}, \mathfrak{G}_C^u = \bigoplus_{|\lambda_i| > 1} W_{\lambda_i}
$$

are subalgebras of \mathcal{G}_c . These are the complexifications of $\mathcal{G}'(a)$, $\mathcal{G}'(a)$, $\mathcal{G}''(a)$, which are therefore subalgebras of Θ as we claimed earlier. Assuming that $|\lambda_1| \leq \cdots \leq |\lambda_k|$ are the eigenvalues with $|\lambda_i| > 1$, one has $[0, \infty]_{i=j}^k W_{\lambda_i}$ $\subset \bigoplus_{i=i+1}^k W_{\lambda_i}$. From this it follows that \mathfrak{G}^* and hence $\mathfrak{G}^*(a)$ is nilpotent.

From $[W_{\lambda_1}, W_{\lambda_1}] \subset W_{\lambda_1\lambda_2}$ one sees that $\mathfrak{G}^{\text{cs}}(a) = \mathfrak{G}^{\text{c}}(a) + \mathfrak{G}^{\text{s}}(a)$ is a subalgebra of \mathfrak{G} ; let G° be the corresponding subgroup of G. One defines two C^* foliations on G/Γ by

$$
\mathcal{G}^{\mu} = \{G^{\mu}x\}_{x \in G/\Gamma} \text{ and } \mathcal{G}^{cs} = \{G^{cs}x\}_{x \in G/\Gamma}.
$$

These foliations are invariant under T_a in the sense that

$$
T_a(G^{\mu}x)=(aG^{\mu}a^{-1})ax=G^{\mu}T_a x \text{ and } T_a(G^{cs}x)=G^{cs}T_a x.
$$

The two foliations \mathscr{G}^* and \mathscr{G}^s are transversal with complementary dimensions. Let $p = \dim G^*$ and $q = \dim G^*$; pick small disk neighborhoods $U \subset G^*$ and $V \subset G^u$ of e. One can find open sets M_1, \dots, M_r covering G/Γ and C^{∞} diffeomorphisms $\phi_i = (\phi_i^1, \phi_i^2): M_i \to D^p \times D^q$ (Dⁿ is the n-disk) so that

$$
\phi_i(M_i \cap Vx) = D^p \times \phi_i^2(x) \text{ and } \phi_i(M_i \cap Ux) = \phi_i^1(x) \times D^q
$$

for every $x \in M_i$.

On a leaf $G''x$ of \mathscr{G}'' we let μ^* denote the measure induced from the Riemannian metric of *G/F* restricted to *G"x.* Since the Riemannian metric on G/Γ came from a right invariant metric on G, we see that μ^* comes from a right Haar measure μ^* on G^* via the immersion $G^* \to G^*x$ (by $g \to gx$).

LEMMA. *There is a function* $\alpha(\delta) > 0$ defined for $\delta > 0$ with $\lim_{\delta \to 0} \alpha(\delta) = 1$ and for which the following holds: If L_1 , L_2 are compact subsets of G^*x_1 , G^*x_2 *and there is a continuous function k:* $L_1 \rightarrow B_8(e, G^{\text{cs}})$ *and a bijection h:* $L_1 \rightarrow L_2$ *so that* $h(z) = k(z)z$, then $\mu^*(L_1) \geq \alpha(\delta)\mu^*(L_2)$.

PROOF. Let $M^* \subset M_i$ be compact with $G/\Gamma \subset \bigcup_{i=1}^{r}$ int M^* . It is enough to prove the statement for L_1 , $L_2 \subset$ some M^* and $\phi_i(L_i) = L'_i \times u_i$. Then $L'_i = L'_i$

Vol. 23, 1976 **WEAK MIXING** 269

and the $\phi_i(L_i)$ have the same measure using the Euclidean metric. Since the ϕ_i : $M^* \rightarrow R^{p+q}$ are C^* and the M^* are compact, the ratio $\mu^*(L_1)/\mu^*(L_2)$ is bounded and tends to 1 as $\delta \rightarrow 0$ (i.e., $||u_1 - u_2|| \rightarrow 0$).

Let ν denote any $G^{\mu'}$ -invariant Borel probability measure.

LEMMA 2. *Suppose* $R \subset G^*$ is open, $S \subset G^{cs}x$ is compact, and $(r, s) \rightarrow rs$ is *one-to-one on* $R \times S \rightarrow G/\Gamma$. If $X \subset Y \subset RS$ are Borel sets, then $\nu(X)/\nu(Y) \in$ $\left[\text{inf}\Phi, \text{sup}\Phi \right]$ where

$$
\Phi = \left\{ \frac{\mu^{\mathfrak{u}}(X \cap Rs)}{\mu^{\mathfrak{u}}(Y \cap Rs)} : s \in S, \mu^{\mathfrak{u}}(Y \cap Rs) > 0 \right\}.
$$

PROOF. Define *m* on *S* by $m(E) = v(RE)$ for $E \subset S$. There are Borel measures v_s on *Rs* for *m* almost every $s \in S$ such that [9]:

$$
\nu(W) = \int \nu_s(W \cap Rs) dm(s)
$$

for $W \subset RS$ Borel. The measures ν , are determined (for *m*-almost all *s*) by this formula. As $v(gW) = v(W)$ for $g \in G^*$, this uniqueness implies that for m-almost all s the measure ν_s comes from a left (local) Haar measure on $R \subset G^*$ via the identification $R \rightarrow Rs$. Since G^* is unimodular (it is nilpotent), ν_s is proportional to μ^* *Rs* for *m*-almost all *s*. The lemma follows by applying the formula to both $W = X$ and $W = Y$.

We call a Borel set $H \subset G/\Gamma$ of small diameter a *box* if for any points x_1 , $x_2 \in H$ the point $Ux_1 \cap Vx_2 \in H$. A set of small diameter H is contained in some M_i ; H is seen to be a box if and only if $\phi_i(H) = L \times K$ for some Borel sets $L \subset D^p$ and $K \subset D^q$.

LEMMA 3. *For any* $\beta > 0$ *there is a finite cover of G* $/\Gamma$ by boxes H_1, \dots, H_t of *diameter at most* β *with* $\mu(H_i) > 0$ *and* $\nu(a^nH_i \cap a^nH_k) = 0$ *for* $i \neq k$ *,* $n \geq 0$ *.*

PROOF. Define the measure ν_n by $\nu_n(E) = \nu(a^n E)$. For $g \in G^*$ one has

$$
\nu_n(gE) = \nu(a^n gE) = \nu((a^n g a^{-n}) a^n E) = \nu(a^n E) = \nu_n(E).
$$

So $\nu' = \sum_{n=0}^{\infty} (1/2^n) \nu_n$ is a G["]-invariant measure. It is enough to cover G/Γ by small boxes H_1, \dots, H_n with pairwise disjoint interiors, $H_i = \overline{\text{int } H_i}$ and $\nu'(\partial H_i) = 0$. Lemma 2 applied to ω' in place of ν gives us a measure m'_i on $S_i = \phi_i^{-1} (0 \times D^4)$ when we use $R = V$. We identify S_i with $0 \times D^4$ and think of m'_i as being on $0 \times D^q$. For a box $H \subset M_i$ let us write $\phi_i(H) = L \times K$; then $\omega'(\partial H) = 0$ provided

$$
m'_{\lambda}(\partial K) = 0 \text{ and } \mu^{\mu}(\partial L) = 0.
$$

We construct inductively on i a cover $\{H_1, \dots, H_n\}$ of $M_1 \cup \dots \cup M_i$ by boxes such that:

$$
H_i = \overline{\text{int } H_i}, \text{int } H_i \cap \text{int } H_k = \emptyset \text{ for } j \neq k,
$$

and (*) holds for $H_i \text{ with } j \in (t_{i-1}, t_i].$

For $j \in [1, t_i]$ let

$$
\phi_{i+1}(M_{i+1}\cap\mathrm{int}\,H_i)=L_i\times K_i.
$$

One sees that (*) holding for the $i' \leq i$ with $j \in (t_{i'-1}, t_i]$ implies that

$$
m'_{i+1}(\partial K_i) = 0
$$
 and $\mu^{\mu}(\partial L_i) = 0$.

For every subset $\Lambda \subset \{1, \dots, t_i\}$ (including $\Lambda = \emptyset$) define

$$
K_{\Lambda} = \left(D^{q} \bigcap_{J \in \Lambda} K_{j}\right) \setminus \bigcup_{j \notin \Lambda} \overline{K}_{j}
$$

$$
L_{\Lambda} = \left(D^{p} \bigcap_{j \in \Lambda} K_{j}\right) \setminus \bigcup_{j \notin \Lambda} \overline{L}_{j}.
$$

Slightly shrinking M_{i+1} if necessary, we may assume $m'_{i+1}(\partial D^q)=0$ and $\mu^*(\partial D^p) = 0$. As $\partial K_\Lambda \subset \partial D^q \cup \bigcup_i \partial K_i$, one has $m'_{i+1}(\partial K \Lambda) = 0$. Also $K_\Lambda = K_{\Lambda'}$ if $K_A \cap K_{A'} \neq \emptyset$, and $D^q = \bigcup_A \overline{K}$. Similarly, $\mu^*(\partial L \Lambda) = 0$, $L_A = L_{A'}$ if $L_A \cap L_A \neq \emptyset$, and $D^p = \bigcup_{A} \overline{L}_A$. Let H_{n+1}, \cdots, H_{n+1} be all the $\phi_{i+1}^{-1}(\overline{L_A \times K_A})$ not contained in some H_i with $j \in [1, t_i]$.

We will now show $\nu = \mu$. Let $F = \phi_i^{-1}(L \times K)$ be a compact box and let $F_r = \phi_i^{-1}(L \times B_r(K))$ where $B_r(K)$ is the y-neighborhood of K in R^q for $\gamma > 0$. There is a $\delta > 0$ so that $kx \in F$, when $x \in F$ and $k \in B_{\delta}(e, G^{\circ})$. Finally, since $ad_a | \mathcal{G}^c(a)$ is semisimple and $ad_a | \mathcal{G}^s(a)$ has all eigenvalues $|\lambda| < 1$, there is an $\epsilon > 0$ so that

$$
k\in B_{\epsilon}(e,G^{cs})\Rightarrow a^{n}ka^{-n}\in B_{\delta}(e,G^{cs})\, n\geq 0.
$$

If $x' = kx$ with $x \in G/\Gamma$ and $k \in B_{\epsilon}$ (e, G^{cs}), then $T_a^* x' = (a^n k a^{-n}) T_a^* x$ and $a^{n}ka^{-n} \in B_{\delta}(e, G^{cs}).$

Let H_1, \dots, H_t be a cover of G/Γ by disjoint boxes given by Lemma 3 of such small diameter that

$$
x \in H_i
$$
, $x' \in Ux \cap H_j \Rightarrow x' = kx$ with $k \in B_{\epsilon}(e, G^{\alpha})$.

Pick $z_i \in H_i$. For $y \in H_i \cap Uz_i$ and $m > 0$ define

$$
A_m(y) = Vy \cap H_i \cap a^{-m}F
$$

and

$$
A_n^{\gamma}(y) = Vy \cap H_i \cap a^{-m}F_{\gamma}.
$$

For $y, y' \in H_i \cap Uz_i$ one has a one-to-one map $A_m(y) \rightarrow A_m'(y')$ defined by $x \rightarrow x' = Vy' \cap Ux$. For then $x' = kx$ with $k \in B_{\epsilon}(e, G^{\circ})$ and $a''''x' =$ $(a^mka^{-m})a^mx$. Since $a^mx \in F$ we have $a^mx' \in F_x$. Lemma 1 gives

(1)
$$
\mu^{\mu}(a^m A_m^{\alpha}(y')) \geq \alpha(\delta) \mu^{\mu}(a^m A_m(y)).
$$

Since T_a is weak mixing (see [4]) there is a sequence $m_k \to \infty$ so that

$$
\lim_{k\to\infty}\mu(a^{m_k}H_j\cap F)=\mu(H_i)\mu(F)
$$

for all $1 \leq j \leq t$. For large $m = m_k$ one has (using $\mu(a^m H_i) = \mu(H_i) > 0$)

(II)
$$
\frac{\mu(a^m H_i \cap F)}{\mu(a^m H_i)} \geq (1 - \delta)\mu(F).
$$

Now $a^mH_i \subset a^m(VUz_i) = (a^mVa^{-m})(a^mUz_i)$. We apply Lemma 2 to $x = a^mz_i$, $R = a^{m}Va^{-m}$, $S = (a^{m}Ua^{-m})a^{m}zg$, $X = a^{m}H_{i} \cap F$, $Y = a^{m}H_{i}$ and $\nu = \mu$. By (II) and Lemma 3 there is an $s \in a^{m}(H_i \cap Uz_i)$ with

$$
\frac{\mu^{\mu}(a^mVa^{-m}s\cap a^mH_i\cap F)}{\mu^{\mu}(a^mVa^{-m}s\cap a^mH_i)}\geq (1-\delta)\mu(F).
$$

Now $s = a^m y$ with $y \in H_i \cap Uz_i$ and one can rewrite this expression as

(III)
$$
\frac{\mu^{\mu}(a^m A_m(y))}{\mu^{\mu}(a^m(Vy \cap H_i))} \geq (1 - \delta) \mu(F).
$$

Using (I), for *any* $y' \in H_i \cap Uz_i$ one obtains

$$
(IV) \qquad \frac{\mu^{\mu}(a^m A_m^{\nu}(y'))}{\mu^{\mu}(a^m(Vy' \cap H_i))} \geq \frac{\mu^{\mu}(a^m(Vy \cap H_i))}{\mu^{\mu}(a^m(Vy' \cap H_i))} \alpha(\delta)(1-\delta)\mu(F)
$$

$$
\geq \alpha(\delta)^2(1-\delta)\mu(F).
$$

For the second inequality we use Lemma **1.** Working backwards and applying Lemma 2 to ν , $X = a^m H_j \cap F_\nu$ and $Y = a^m H_j$ we get

$$
\frac{\nu(a^mH_i\cap F_\gamma)}{\nu(a^mH_i)}\geq \alpha(\delta)^2(1-\delta)\mu(F).
$$

This holds true for all large $m = m_k$ and all $1 \leq j \leq t$. Summing over j (using $\nu(a^mH_i \cap a^mH_k) = 0$)

$$
\nu(F_{\gamma}) = \sum_{i} \nu(a^m H_i \cap F_{\gamma}) \geq \alpha(\delta)^2 (1 - \delta) \mu(F).
$$

Letting $\gamma \to 0$, $\delta \to 0$ and $\nu(F) \ge \mu(F)$.

One obtains $\mu(F) \ge v(F)$ analogously. Use a sequence $m_k \to \infty$ with $\mu(a^{m k}H_i \cap F_{\gamma}) \rightarrow \mu(H_i)\mu(F_{\gamma})$. For large $m = m_k$ one has

(II')
$$
(1+\delta)\mu(F_{\gamma}) \geq \frac{\mu(a^mH_i \cap F_{\gamma})}{\mu(a^mH_i)}.
$$

Using Lemma 2 one finds a $y' \in H_i \cap Uz_i$ with

(III')
$$
(1+\delta)\mu(F_{\gamma}) \geq \frac{\mu^{\mu}(a^{m}A_{m}^{\gamma}(y'))}{\mu^{\mu}(a^{m}(Vy') \cap H_{j}))}.
$$

For any $y \in H_i \cap Uz_i$, (I) gives us

$$
(IV') \hspace{1cm} (1+\delta)\mu(F_{\gamma})\alpha(\delta)^{-2} \geq \frac{\mu^{\mu}(a^m A_m(y))}{\mu^{\mu}(a^m(Vy \cap H_i))}.
$$

Then Lemma 3 gives

$$
(1+\delta)\mu(F_{\gamma})\alpha(\delta)^{-2} \geq \frac{v(a^mH_i \cap F)}{v(a^mH_i)}
$$

and so $(1+\delta)\mu(F_r)\alpha(\delta)^{-2} \ge \nu(F)$. Letting $\gamma \to 0$, $\delta \to 0$ and $\mu(F) \ge \nu(F)$.

We have seen $\nu(F) = \mu(F)$ for all small compact boxes F. This implies $\nu = \mu$, and the action of $G[*]$ is uniquely ergodic.

2. Afline maps

Suppose now that A is an automorphism of G with $A(\Gamma) = \Gamma$ and $a \in G$. Then

$$
T(g\Gamma)=aA(g)\Gamma
$$

defines a measure preserving map $T: G/\Gamma \rightarrow \Gamma$. Then $R(g) = aA(g)a^{-1}$ is an automorphism of G and its derivative $r = dR_c$: $\mathcal{B} \rightarrow \mathcal{B}$ is a Lie algebra automorphism. Let $G^u(r)$ be the subgroup of G associated with the subalgebra

Vol. 23, 1976 WEAK MIXING 273

 $\mathbb{G}^u(f)$ corresponding to all eigenvalues λ of r with $|\lambda| > 1$. The proof in Section **1 works still in this case.**

THEOREM. Let T as above be weak mixing and assume $r \mid \mathcal{G}^c(r)$ is a *semi-simple linear map. Then the action of* $G^u(r)$ *on* G/Γ *is uniquely ergodic.*

3. Semi-simple G

Let G be a semi-simple Lie group with finite center and no compact factor and let $G = KAN$ be an Iwasawa decomposition. Then Veech [11] proved that N is uniquely ergodic on G/Γ for any co-compact discrete subgroup $\Gamma \subset G$. By the construction of an Iwasawa decomposition [5], $\mathfrak{G}^*(a) \subset \mathcal{N}$ for a in the exponential A^+ of the positive Weyl chamber and $\mathcal N$ the Lie algebra of N. Also ad_a is semi-simple for all $a \in A$. Thus our theorem gives Veech's result if there are any $a \in A^+$ with T_a weak mixing (if G_a^* is uniquely ergodic, so is the larger group **N). The existence of such an a follows from [7] or [12].**

The minimal actions of theoreml.3 of [11] (see also theor. 5, [10]) are in fact uniquely ergodic. Here one has a weak mixing R ~ action; almost every element of such an action is weak mixing (apply [8] to the direct product of the action with itself.)

REFERENCES

1. D. **Anosov,** *Geodesic flows on closed Riemann mani/olds with negative curvature,* Proc. **Steklov Inst. Math. 90** (1967).

2. R. **Bowen and** B. Marcus, *Unique ergodicity of horocycle/oliations,* **to appear.**

3. H. **Furstenberg, The** *unique ergodicity o/ the horocycle flow,* **in** *Recent Advances in Topological Dynamics,* **Springer-Verlag Lecture Notes 318, pp.** 95-114.

4. P. Halmos, *Lectures on Ergodic Theory,* Chelsea, 1956.

5. S. **Helgason,** *Differential Geometry and Symmetric Spaces,* Academic Press, 1962.

6. B. Marcus, *Unique ergodicity of the horocycle flow : variable negative curvature case,* **Israel** J. **Math.** 21 (1975), 133-144.

7. C. Moore, *Etgodicity o/flows on homogeneous spaces,* **Amer. J. Math.** 88 (1966), 154-178.

8. C. Pugh and M. Shub, *Ergodic elements o/ergodic actions,* **Compositio Math.** 23 (1971), 115-122.

9. V. Rohlin, *On the Fundamental Ideas of Measure Theory,* **Amer. Math.** Soc. No. 71.

10. A. **Stepin,** *Dynamical systems on homogeneous spaces of semi-simple Lie groups,* **Math.** USSR-Izv. 7 (1973), 1089-1104.

11. W. Veech, *Unique ergodicity of horospherical flows,* Israel J. **Math. 21** (1975), 233-239.

12. F. Mautner, *Geodesic flows on symmetric Riemann spaces,* Ann. **of Math. 65** (1957), 416-431.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIF. 94720 U.S.A.