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WEAK MIXING AND UNIQUE ERGODICITY
ON HOMOGENEOUS SPACES

BY
RUFUS BOWEN'"

ABSTRACT

Under certain conditions the weak mixing of a translation on G/I" implies that
the action of an associated subgroup of G on G/I' is uniquely ergodic. This
result generalizes earlier theorems of Furstenberg and Veech.

Let G be a Lie group and I' a discrete subgroup with G/I' compact. Then G
actson G/T' by T, (k)= ghl'. We will assume G unimodular so that some Haar
measure on G induces a G-invariant probability measure u on G/I". On G/T
one takes a Riemannian metric induced from a right invariant metric on G. For
a € G the automorphism Ad,(g)= aga ' of G corresponds to an automorph-
ism ad, of the Lie algebra of G. Let 3°(a), % (a), 8“(a) denote the invariant
subspaces of (8§ corresponding to the eigenvalues of ad, satisfying [A [ <1,
|[A|=1,]A]|>1 respectively. These subspaces are subalgebras of J; let G* be
the subgroup of G corresponding to ($*(a). In this paper we prove the

THEOREM. Assume that T, is weak mixing on (G /T, u) and that ad, |$“(a)
is a semisimple linear map. Then action of G" on G/I' on the left is uniquely
ergodic.

This means that u is the only Borel probability measure on G/I' invariant
under G* One case of the above is a theorem of Furstenberg [3]; here T, is (part
of) a geodesic flow and G* is a horocycle flow. In Section 3 one will see that this
theorem also includes Veech’s [11] generalization of Furstenberg to semi-simple
Lie groups. The basic idea used in the present paper occurs in [2]; in some sense
one can find it in [1] and [11]. The papers [2] and [6] give analogues of
Furstenberg’s theorem in dynamical systems which move away from the Lie
group framework.
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1. Proof of the Theorem

Let 8¢ be the complexification of & and W, ={v € B¢:(ad, — A)"v =0
some n >0}. Then ¢ = P, W,, where A\, - -+, A, are the distinct eigenvalues
of ad, and also [W,, W, | CW,, (this standard fact follows as ad, is a Lie
algebra automorphism). From this it follows that

B = 2, W, ¢ ‘@I W,, §¢ D Wi,
are subalgebras of (.. These are the complexifications of &*(a), & (a), $“(a),
which are therefore subalgebras of & as we claimed earlier. Assuming that
[A/]=--- =| | are the eigenvalues with |A;[>1, one has [$¢, @f‘:, W,
C@L,H W,. From this it follows that (8¢ and hence 8"(a) is nilpotent.

From [W,,, W, ] C W,,, one sees that $“(a) = &(a)+ & (a) is a subalgebra
of &; let G be the corresponding subgroup of G. One defines two C~ foliations
on G/I' by

(g“ = {Gux}xea/r and 9§ = {G“x},e(;/r.
These foliations are invariant under T, in the sense that
T.(G“x) = (aG"“a Yax = G*T.x and T,(G“x)= G“T,x.

The two foliations 4* and 4 are transversal with complementary dimen-
sions. Let p = dim G* and g = dim G“; pick small disk neighborhoods U CG*
and V CG* of e. One can find open sets M,,---, M, covering G/T and C~
diffeomorphisms ¢; = (¢!, ¢7): Mi— D? X D? (D" is the n-disk) so that

¢, (M, N Vx)= D? X $X(x)and ¢,(M, N Ux) = ¢!(x) x D*

for every x E M.

On a leaf G*x of ¥* we let u“ denote the measure induced from the
Riemannian metric of G/I restricted to G*x. Since the Riemannian metric on
G /T came from a right invariant metric on G, we see that ©* comes from a right
Haar measure u* on G* via the immersion G*— G*“x (by g — gx).

Lemma.  There is a function a(8) >0 defined for & >0 with lim;_.,a(8) =1
and for which the following holds: If L., L, are compact subsets of G*“x,, G*“x,
and there is a continuous function k: L, — Bs;(e, G*) and a bijection h: L,— L,
so that h(z)=k(z)z, then p*(L)Z a(8)u“(L2).

ProoF. Let M* CM, be compact with G/T'C U [ int M*. It is enough to
prove the statement for L,, L,C some M* and ¢é.(L;)= LixX u. Then Li=L;
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and the ¢;(L;) have the same measure using the Euclidean metric. Since the ¢::
M*— RP*are C” and the M * are compact, the ratio p *(L,)/n “ (L) is bounded
and tends to 1 as § =0 (i.e., Ju,—u,|—0). B

Let v denote any G*“-invariant Borel probability measure.

LeEmMA 2. Suppose R CG" is open, S CG“x is compact, and (r,s)—>rs is
one-to-one on R xS — G/I'. If X CY CRS are Borel sets, then v(X)/v(Y)E
[infd, sup ®] where

@_{ux_mgg), ses,,u(YﬂRs)>o}.

“1e“(YNRsy

Proor. Define m on S by m(E)=v(RE) for ECS. There are Borel
measures v, on Rs for m almost every s € S such that [9]:

(W)= f v, (W N Rs)dm(s)

for W C RS Borel. The measures v, are determined (for m-almost all s) by this
formula. As »(gW)=v(W) for g € G* this uniqueness implies that for
m-almost all s the measure », comes from a left (local) Haar measure on R CG*
via the identification R — Rs. Since G*“ is unimodular (it is nilpotent), v, is
proportional to u* | Rs for m-almost all s. The lemma follows by applying the
formula to both W= X and W =Y. |

We call a Borel set H C G/T" of small diameter a box if for any points x,,
x, € H the point Ux, N Vx, € H. A set of small diameter H is contained in some
M;; H is seen to be a box if and only if ¢;(H)= L X K for some Borel sets
L CD? and KCD*“

Lemma 3. For any B >0 there is a finite cover of G/I' by boxes H,,- - -, H, of
diameter at most B with u(H;)>0 and v(a"H; N a"Hy)=0 for j# k, n 2 0.

Proor. Define the measure v, by v,(E)= v(a"E). For g € G* one has
v.(gE)=v(a"gE)=v((a"ga ")a"E)= v(a"E) = v.(E).

So v’ =35.0(1/2")v, is a G*-invariant measure. It is enough to cover G/I" by
small boxes H,, --,H, with pairwise disjoint interiors, H; = int H, and
v'(dH;) =0. Lemma 2 applied to o' in place of v gives us a measure m; on
S, = ¢;'(0x D) when we use R = V. We identify S; with 0x D and think of
m' as being on 0X D For a box HCM, let us write ¢;(H)=L x K then

w'(0H) = 0 provided
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™) mi{(8K)=0 and p“(éL)=0.

We construct inductively on i acover {H,, -+, H,} of M, U -+ U M, by boxes
such that:

H, =int H, int H, Nint H, = & for j # k,
and (*) holds for H; with j € (t,_,, &].
For j €[1,1] let
&M, NintH)=L, XK,
One sees that (*) holding for the i’ =i with j € (t,-, t] implies that
mi(3K;)=0and u*(3L;)=0.

For every subset A C{1,---,#} (including A = J) define

Ke=(D* N KN UK

JeA

Lo=(p* N KN UL
jEA JEA

Slightly shrinking M., if necessary, we may assume mi, (dD?)=0 and
p“(@D?)=0. As 3K, CaD* U U,3K;, one has m}..(3KA)=0. Also K, = K, if
KiNKy#D, and D*=U,K. Similarly, p“(ALA)=0, L,=L, if
LaNLye#@,and D” = U, L.. Let H,., -, H,., be all the ¢}, (L4 X K,) not
contained in some H; with j €[1,£]. |

We will now show v =pu. Let F=¢;'(L X K) be a compact box and let
F, = ¢7'(L X B,(K)) where B,(K) is the y-neighborhood of K in R? for y > 0.
There is a 8 >0 so that kx € F, when x € F and k € B;(e, G*). Finally, since
ad, | & (a) is semisimple and ad, | &*(a) has all eigenvalues | A | < 1, there is an
¢ >0 so that

k €B.(e,G")> a"ka™" € Bs(e, G*)n 2 0.

If x"=kx with x€G/T and k € B.(¢, G*), then Tix'=(a"ka™")T:x and
a"ka™™ € Bs(e, G*).

Let Hy,-- -, H, be a cover of G/T" by disjoint boxes given by Lemma 3 of such
small diameter that
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x€EH,x’€UxNH; > x'"=kx withk € B.(e, G*).
Pick z; € H;. For y € H; N Uz; and m >0 define
A.(y)=VyNH Na"F
and
AXy)=VyNH Na"F,
For y,y'€ H; N Uz; one has a one-to-one map A.(y)— A)(y’) defined by

x—x'=Vy'NUx. For then x'=kx with k€B.(¢,G") and a"x'=
(a™ka ™)a"x. Since a™x € F we have a™x'€ F,. Lemma 1 gives

M p(@a"Any) = a(d)u"(@"An(y)).
Since T, is weak mixing (see [4]) there is a sequence m, — ® so that

lim p(a™H, N F)= u(H;)p(F)

Kk —x

for all 1 =j =1t For large m = m, one has (using p(a™H;)= uw(H;)>0)

(1) plartl o= - s)u(p).

Now a™H; Ca™(VUz)=(a"Va ")(a™Uz;). We apply Lemma 2 to x = a"z,
R=a"Va™ S=(@"Ua")a"zg, X =a"H,NF,Y =a™H; and v = u. By (1I)
and Lemma 3 there is an s € a™(H; N Uz,;) with
p“(@"Va "sNa"H NF)
p“(@a™va"s Na™H;)

Z(1-8)u(F).

Now s = a™y with y € H, " Uz; and one can rewrite this expression as

(1) " f(;(f (m‘f;“r(]y ,)% 52 (1= 9 (F)

Using (I), for any y'€ H; N Uz; one obtains

‘(@A (y)) o p*(@”(Vy O H,)) _
V) A s A a2 ) (- Or(F)

= a(8)'(1 - d)u(F).

For the second inequality we use Lemma 1. Working backwards and applying
Lemma 2 to v, X =a™H;NF, and Y = a™H, we get
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v(a"H, NF, 201
A 2 a0y~ S)u(F),
This holds true for all large m = m, and all 1=j =t Summing over j (using
v(a™H; N a™H,)=0)
v(F,)= Y v(a"H, N F,) 2 a(8(1- 8)u(F).
1

Letting y—0, § =0 and v(F)z u(F).
One obtains u(F)= v(F) analogously. Use a sequence m, —® with
w(a™H; N F,)—> u(H;)p(F,). For large m = m, one has

, S p(@™H NE
) 1+ 8y (F,) 2 LR,

Using Lemma 2 one finds a y'€ H; N Uz; with

aur) 1+ S)M(Fv)gug(;(f (mxéym'yr(wygz»'

For any y € H; N Uz, (I) gives us

av’) (1+8)p(F)a(8)”2 ,f(;(f ((/ergyf)} )’

Then Lemma 3 gives

(1+6)M(Fy)a(5)_zg%

and so (1+ 8)u(F,)a(8)*= v(F). Letting y —>0, § >0 and u(F)= v(F).
We have seen v(F) = p(F) for all small compact boxes F. This implies v = u,
and the action of G* is uniquely ergodic.

2. Affine maps

Suppose now that A is an automorphism of G with A(I')=T and a € G.
Then

T(gl)=aA(g)r

defines a measure preserving map T: G/T > TI'. Then R(g)=aA(g)a ' is an
automorphism of G and its derivative r=dR.: 8—>® is a Lie algebra
automorphism. Let G“(r) be the subgroup of G associated with the subalgebra
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&*(f) corresponding to all eigenvalues A of r with | A | > 1. The proof in Section
1 works still in this case.

THEOREM. Let T as above be weak mixing and assume r|&°(r) is a
semi-simple linear map. Then the action of G*“(r) on G/T is uniquely ergodic.

3. Semi-simple G

Let G be a semi-simple Lie group with finite center and no compact factor and
let G = KAN be an Iwasawa decomposition. Then Veech [11] proved that N is
uniquely ergodic on G/T" for any co-compact discrete subgroup I' C G. By the
construction of an Iwasawa decomposition [5], &*(a) CW for a in the exponen-
tial A* of the positive Weyl chamber and ¥ the Lie algebra of N. Also ad, is
semi-simple for all a € A. Thus our theorem gives Veech’s result if there are any
a € A" with T, weak mixing (if G: is uniquely ergodic, so is the larger group
N). The existence of such an a follows from [7] or [12].

The minimal actions of theorem1.3 of [11] (see also theor. 5, [10]) are in fact
uniquely ergodic. Here one has a weak mixing R" action; almost every element
of such an action is weak mixing (apply [8] to the direct product of the action
with itself.)

REFERENCES

1. D. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc.
Steklov Inst. Math. 90 (1967).
2. R. Bowen and B. Marcus, Unique ergodicity of horocycle foliations, to appear.
3. H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in
Topological Dynamics, Springer-Verlag Lecture Notes 318, pp. 95-114.
4, P. Halmos, Lectures on Ergodic Theory, Chelsea, 1956.
5. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
6. B. Marcus, Unique ergodicity of the horocycle flow : variable negative curvature case, Israel J.
Math. 21 (1975), 133-144.
7. C.Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154-178.
8. C. Pugh and M. Shub, Ergodic elements of ergodic actions, Compositio Math. 23 (1971),
115-122.
9. V. Rohlin, On the Fundamental Ideas of Measure Theory, Amer. Math. Soc. No. 71.
10. A. Stepin, Dynamical systems on homogeneous spaces of semi-simple Lie groups, Math.
USSR-Izv. 7 (1973), 1089-1104.
11. W. Veech, Unique ergodicity of horospherical flows, Israel J. Math. 21 (1975), 233-239.
12. F. Mautner, Geodesic flows on symmetric Riemann spaces, Ann. of Math. 6§ (1957), 416-431.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIF. 94720 U.S.A.



